ON THE NON-EXISTENCE OF TRIMETHYLSILYL TETRAFLUOROBORATE IN ACETONE AND ACETONITRILE : THE GENERATION OF BORON TRIFLUORIDE IN WEAKLY COORDINATING SOLVENTS

Alan R. Bassindale* and Tim Stout The Department of Chemistry, The Open University, Walton Hall, Milton Keynes, MK7 6AA, Bucks, UK.

<u>Summary</u>: The recently proposed preparation of trimethylsilyl tetrafluoroborate¹ actually gives trimethylfluorosilane and boron trifluoride coordinated to acetone or acetonitrile.

We are currently studying^{2,3} the interaction of highly electrophilic silicon species $(Me_3SiX, X = I, Br, OSO_2CF_3, ClO_4)$ with nucleophiles, such as hexamethylphosphoramide, dimethyl formamide and acetonitrile. Our aim is to produce more effective silylation agents for organic synthesis. The recent report¹ on the apparent generation of a new, highly electrophilic species, trimethylsilyl tetrafluoroborate was therefore of considerable interest. The reagent was produced by the reaction of silver tetrafluoroborate with trimethylchlorosilane in acetonitrile or acetone. The reaction was suggested to be:

$$Me_3SiCl + AgBF_4 + CH_3CN \rightarrow Me_3SiN \equiv CCH_3 + AgCl + BF_4$$

The proposed course of the reaction was surprising on a number of grounds. The siliconfluorine bond is extremely strong⁴ ($E_m = 594 \text{ kJ mol}^{-1}$), and therefore trimethylfluorosilane might be expected to be a major product. This is confirmed by the early report of Lawton and Levy⁵ that an analogous attempt at the synthesis of triphenylsilyl tetrafluoroborate gave triphenylfluorosilane in moderate yields.

$$Ph_3SiCl + NaBF_4 + (CH_3)_2C=O \rightarrow Ph_3SiF + BF \cdot O=C(CH_3)_2 + NaCl$$

In addition, the proposed trimethylsilyl tetrafluoroborate was used, in one example, with water as the nucleophile¹. Under such circumstances rapid hydrolysis would result.

$$Me_{3}si-N=CCH_{3} + H_{2}O \rightarrow Me_{3}siOH + H-N=CCH_{3}$$

$$\downarrow$$

$$(Me_{3}si)_{2}O$$

We have therefore examined the nmr spectra of the products of reaction of silver tetrafluoroborate with trimethylchlorosilane in deuterioacetone and deuterioacetonitrile, and can confirm that trimethylfluorosilane is produced quantitatively in each case.

$$\begin{split} & \operatorname{Me}_{3}\operatorname{SiCl} + \operatorname{AgBF}_{4} + \operatorname{CH}_{3}\operatorname{C=N} \xrightarrow{} \operatorname{Me}_{3}\operatorname{SiF} + \operatorname{BF}_{3} \cdot \operatorname{N=CCH}_{3} \\ & \operatorname{Me}_{3}\operatorname{SiCl} + \operatorname{AgBF}_{4} + (\operatorname{CH}_{3})_{2}\operatorname{C=O} \xrightarrow{} \operatorname{Me}_{3}\operatorname{SiF} + \operatorname{BF}_{3} \cdot \operatorname{O=C}(\operatorname{CH}_{3})_{2} \end{split}$$

The presence of trimethylfluorosilane as the only silicon-containing product was confirmed by comparison of the ²⁹Si and ¹⁹F spectra with an authentic sample of trimethylfluorosilane (²⁹Si nmr : doublet J = 274H₃ δ 32.9 ppm in acetone-d₆ relative to internal TMS; ¹⁹F, δ -156 ppm relative to internal CFCl₃, lit. -158 ppm⁶. The ¹⁹F nmr spectra of the reaction mixtures showed, in addition to Me₃SiF a singlet (δ -147 in (CD₃)₂CO and δ -141 in CD₃CN, lit. -143 ppm⁷) attributable to coordinated BF₃. The presence of two separate ¹⁹F peaks and the observation of silicon-fluorine coupling shows that the equilibrium,

$$BF_3 + Me_3SiF \longrightarrow BF_2F + Me_3SiF$$

is slow on the nmr time scale.

As trimethylfluorosilane is not a highly electrophilic silicon species we suggest that the effective catalyst in the reported solvolyses¹ is BF_3 weakly coordinated to acetone or acetnotrile. Corey⁸ has shown that BF_3 is a useful catalyst in related solvolyses. Although this reaction fails to give a new silicon-based reagent it could provide a useful route to BF_3 coordinated to solvents other than diethyl ether. The trimethylfluorosilane coproduct is not very reactive and unlikely to interfere in any reactions.

REFERENCES

- 1. R.Caputo, C.Ferreri, G.Palumbo and E.Wenkert, Tetrahedron Lett., 577 (1984)
- 2. A.R.Bassindale and T.Stout, J.Organometal. Chem., 238, C41 (1982)
- 3. A.R.Bassindale and T.Stout, J.Organometal. Chem., in press
- 4. S.R.Gunn and L.G.Green, J. Phys. Chem., 65, 779 (1961)
- 5. E.A.Lawton and A.Levy, J. Amer. Chem. Soc., 77, 6083 (1955)
- 6. G.Englehardt and K.Licht, Z. Chem., 10, 266 (1970)
- 7. Yu.A.Basulaev, V.V.Eusikov and Yu.V.Kokunov, Koord Khim, 5, 637, (1979)
- 8. E.J.Corey and R.D.Balanson, Tetrahedron Lett., 3153 (1973)

(Received in UK 10 February 1984)